Inference of biochemical network models in S-system using multiobjective optimization approach
نویسندگان
چکیده
MOTIVATION The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks. RESULTS We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the epsilon-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the epsilon-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders.
منابع مشابه
PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent
In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...
متن کاملADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS
The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Ada...
متن کاملInference of Biochemical S-Systems via Mixed-Variable Multiobjective Evolutionary Optimization
Inference of the biochemical systems (BSs) via experimental data is important for understanding how biochemical components in vivo interact with each other. However, it is not a trivial task because BSs usually function with complex and nonlinear dynamics. As a popular ordinary equation (ODE) model, the S-System describes the dynamical properties of BSs by incorporating the power rule of bioche...
متن کاملXergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system
Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...
متن کاملPrediction and Optimization of the Effects of Combining Ultrasonic Waves and Solvent on the Viscosity of Residue Fuel Oil by ANN and ANFIS
In the present work, the influences of temperature, solvent concentration and ultrasonic irradiation time were numerically analyzed on viscosity reduction of residue fuel oil (RFO). Ultrasonic irradiation was applied at power of 280 W and low frequency of 24 kHz. The main feature of this research is prediction and optimization of the kinematic viscosity data. The measured results of eighty-four...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2008